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Abstract

Vessel–vessel and vessel–tissue heat transfer rates are defined and explicitly quantified, for the first time, for a uni-

formly heated, finite, circular tissue region with two arbitrarily imbedded circular vessels and general Dirichlet bound-

ary conditions. These heat transfer rates are obtained using an exact analytical solution for the tissue temperature field

that is derived herein. Based on these heat transfer rates two different types of Poisson conduction shape factors

(PCSFs) are defined. One is related to the vessel–vessel heat transfer rate (VVPCSF) and the other is related to the ves-

sel–tissue heat transfer rates (VTPCSF). Two, conventional, alternative formulations for the VTPCSFs are studied; one

is based on the difference between the average vessel wall and tissue boundary temperatures, and the other on the dif-

ference between the average vessel wall and the average tissue matrix temperatures. The effects of the angularly varying,

non-uniform boundary conditions, the source term and the diameters and locations of the two vessels on these heat

transfer rates and PCSFs are studied for the typical case of vessels cooling a tissue; i.e., when the average vessel wall

boundary temperatures are lower than the average tissue boundary temperature. Results show that first, the effects of

vessel wall temperature fluctuations on both the vessel–vessel and the vessel–tissue heat transfer rates are significant.

Second, unlike the vessel wall temperature fluctuations, fluctuations at the outer tissue boundary affect only the ves-

sel–tissue heat transfer rates. They do not affect the vessel–vessel heat transfer rates. Third, when strong fluctuations

are present on the vessel walls and outer tissue boundary the shape factors are dependent on the shape of the fluctu-

ations, and are thus very problem specific. Further, the analytical solution procedure used to derive the solution for

the temperature field and the methodology developed to quantify the heat transfer rates are general and can be extended

for the case of �N� arbitrarily located vessels.
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1. Introduction

Due to the postulated importance of counter-current

blood circulation in determining the tissue temperature

distribution [1–7], the effect of the counter-current blood

circulation on the tissue temperature distributions has

been extensively studied for bio-heat transfer
ed.
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Nomenclature

At area of the tissue, pðr2tw � r2vw1 � r2vw2Þ
avi distance between the centers of the tissue

and the ith vessel, i = 1,2 (m)

fvwi temperature at vessel wall i = 1,2 (K)

ftw temperature at the tissue boundary (K)

g000 uniform source term in the tissue per unit

volume (W/m3)

k conductivity of the tissue (W/(m K))

qvw1–vw2 heat transfer from vessel wall one to vessel

wall two (W/m)

qtw–vw1 heat transfer from tissue to vessel wall one

(W/m)

qtw–vw2 heat transfer from tissue to vessel wall two

(W/m)

qtotal,vw1 total heat transfer to vessel wall one (W/m)

qtotal,vw2 total heat transfer to vessel wall two (W/m)

r radial distance (m)

ri perimeter of vessel �i� from the center of

outer tissue cylinder fðavi þ rvwi cos hiÞ2þ
ðrvwi sin hiÞ2g

1
2, i = 1,2 (m)

rvwi radius of the ith vessel, i = 1,2 (m)

rtw outer radius of the tissue boundary (m)

t temperature of the tissue

tavg area averaged tissue matrix temperature,
1
At

R
At
tdA, (K)

tvwi,1 mean temperature at the ith vessel wall,

i = 1,2 (K)

tvwi,2 fluctuation in temperature at the ith vessel

wall, i = 1,2 (K)

ttw,1 mean temperature at the tissue boundary

(K)

ttw,2 fluctuation in temperature at the tissue

boundary (K)

x,y Cartesian coordinates in the original prob-

lem (m)

xi,yi Cartesian coordinates in sub-problem i,

x1 = x, y1 = y, x2 ¼ x1 cosð/1Þ þ y1 sinð/1Þ,
y2 ¼ y1 cosð/1Þ � x1 sinð/1Þ; i ¼ 1; 2 ðmÞ

Non-dimensional parameters

Avi distance between the centers of the tissue

cylinder and the ith vessel, avi/rtw, i = 1,2

a1i constant for ith sub-problem, Avi � Rvwi,

i = 1,2

a2i constant for ith sub-problem, Avi + Rvwi,

i = 1,2

A0i, A
0
0i constant associated with the solution of the

ith sub-problem, i = 1,2

Ani, A
0
ni constant associated with the solution of the

ith sub-problem, i = 1,2

Bni, B0
ni constant associated with the solution of the

ith sub-problem, i = 1,2

Fvwi temperature at vessel wall i = 1,2,

(fvwi � tvw1,1)/(tvw,1 � tvw1,1)
Ftw temperature at outer tissue boundary,

(ftw � tvw1,1)/(ttw,1 � tvw1,1)
nvwi frequency of the temperature distribution at

vessel i

P power deposition, g000r2tw=½ðttw;1 � tvw1;1Þk

Qvw2–vw1 heat transfer from vessel wall two to vessel

wall one, qvw2–vw1/[(ttw,1 � tvw1,1)k]

Qtw–vw1 heat transfer from tissue to vessel wall one,

qtw–vw1/[(ttw,1 � tvw1,1)k]
Qtw–vw2 heat transfer from tissue to vessel wall two,

qtw–vw2/[(ttw,1 � tvw1,1)k]
Qtotal,vw1 total heat transfer into vessel wall one,

qtotal–vw1/[(ttw,1 � tvw1,1)k]

Qtotal,vw2 total heat transfer into vessel wall two,

qtotal–vw2/[(ttw,1 � tvw1,1)k]

R radius, r=rtw; ðX 2
1 þ Y 2

1Þ
1=2

Ri perimeter of vessel �i� from the center of

outer tissue cylinder fðAvi þ Rvwi cos hiÞ2þ
ðRvwi sin hiÞ2g1=2, i = 1,2 (m)

R�
i radius in conformally mapped space for ith

sub-problem, ðU2
i þ V 2

i Þ
1=2

, i = 1,2

Rvwi radius of the ith vessel, rvwi/rtw, i = 1,2

Stw–vwi PCSF defined based on the average tissue

boundary and vessel wall temperatures to

account for the heat transfer rate between

vessel i and the tissue

Stm–vwi PCSF defined based on the average tissue

matrix and vessel wall temperatures to ac-

count for the heat transfer rate between ves-

sel i and the tissue

Svw1–vw2 PCSF defined based on the average vessel

wall temperatures to account for the heat

transfer between the two vessels

T temperature, (t � tvw1,1)/(ttw,1 � tvw1,1)
T1 temperature, T + PR2/4

T1i temperature in sub-problem i = 1,2

Ui first of the two coordinates in the confor-

mally mapped space that relates to the x

and y coordinates of the original Cartesian

coordinate system for ith sub-problem,

fðX i � kiÞð1� kiX iÞ � kiY 2
i g=fð1� kiX iÞ2 �

ðkiY iÞ2g, i = 1,2

Vi second of the two coordinates in the confor-

mally mapped space that relates to the x and

y coordinates of the original Cartesian

coordinate system for ith sub-problem,

fð1� k2i ÞY ig=fð1� kiX iÞ2 � ðkiY iÞ2g, i = 1,2

wi conformal transformation for ith sub-prob-

lem, Ui + jVi = (Xi + jYi � ki)/(1 � ki(Xi +
jYi)), i = 1,2
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Xi,Yi original Cartesian coordinate system in ith

sub-problem (xi,yi)/rtw, i = 1,2

X2 one of the two coordinates of sub-problem 2

related to the original coordinates and the

coordinates of sub-problem 1, X 1 cosð/1Þþ
Y 1 sinð/1Þ

Y2 one of the two coordinates of sub-problem 2

related to the original coordinates and the

coordinates of sub-problem 1, Y1cos(/1) �
X1sin(/1)

Greek symbols

hi angular position from the center of the ith

vessel in the original coordinate system, i =

1,2

ai angular position from the center of ith vessel

in the transformed coordinate system,

tan�1ðV i=UiÞ, i = 1,2

ki constant, f1þa1ia2i�ðð1�a21iÞð1�a22iÞÞ
1=2g=

ða1iþa2iÞ, i = 1,2

w angular position measured from the center

of the tissue

/i angular position of center of the (i + 1)th

vessel from the center of the tissue

/vwi phase angle of the temperature distribution

at vessel i
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applications such as thermoregulation and thermal ther-

apy [8–20]. Thus a number of researchers have at-

tempted to define and quantify the vessel–vessel and

vessel–tissue heat transfer rates and the corresponding

shape factors for the geometry of paired vessels in both

infinite [8–10,12,15,21–23,28] and finite [11,14,17,18,24–

27,29,30], and unheated [8–12,14,15,17,18,21–29] and

heated [30] tissues. Several simplifications have been

employed. First and the most important, only uniform

boundary conditions with either constant and uni-

form Dirichlet (given temperature) boundary condition

[8,9,12,14,15,21,23–25,28,30] or Robbins (convective)

boundary condition with uniform and constant convec-

tive heat transfer coefficient and outer reference temper-

ature [11,13,18,22,26,27,29] have been employed in all of

the previous studies to estimate the heat transfer rates

and shape factors. Since non-uniform boundary condi-

tions are likely to be present on the vessel walls and

any circular tissue boundary used to define shape factors

in unheated and/or heated tissues due to various reasons

(e.g., structure of the vessel network, non-uniform heat-

ing, etc.) [10,27], it is important to extend the previous

derivations/studies to appropriately define/quantify/

study the vessel–vessel and vessel–tissue heat transfer

rates and the corresponding shape factors for the general

case of non-uniform Dirichlet boundary conditions.

Such an extended study will help an accurate quantifica-

tion of the heat transfer rates and/or estimation of the

variations in the heat transfer rates from the values esti-

mated using only uniform boundary conditions in appli-

cations such as RF/microwave/ultrasound assisted

hyperthermia, and high field MR imaging. In addition,

a derivation is needed to evaluate the tissue temperature

distribution in the geometry of arbitrarily located paired

vessels in a heated tissue that allows independent speci-

fication of the general Dirichlet boundary conditions on

all of the surfaces. Such derivations will facilitate the

evaluation of the heat transfer rates and shape factors
used in the development and implementation of im-

proved bio-heat equations [e.g., 31].

Second, the effect of the externally induced tissue

heating has been neglected in the explicit estimation of

the vessel–vessel and vessel–tissue heat transfer rates in

previous counter-current bio-heat transfer analyses ex-

cept in [30]. Since the effect of external heating on the

heat transfer rates is shown to be significant in several

thermal therapy applications [30,32] (e.g., RF/micro-

wave/ultrasound hyperthermia, high temperature cancer

therapies, and high field MR imaging), a source term

representing external heating is included in this study.

Third, in previous counter-current bio-heat transfer

analyses (except in [30]) the evaluation of the vessel–ves-

sel and vessel–tissue heat transfer rates and the corre-

sponding shape factors is performed by assuming that

the vessel–tissue heat transfer rates are zero, and/or the

vessel–tissue heat transfer rates from the two vessels

are equal to each other. The present analysis compli-

ments the previous work by including the effect of un-

equal vessel–tissue heat transfer rates.

In summary, general Dirichlet boundary conditions

are very likely to be present on vessel walls and outer tis-

sue boundary because of the discrete arrangement of

vessels in both, unheated/heated tissues. However, no

study exists that appropriately defines and explicitly

quantifies the vessel–vessel and vessel–tissue heat trans-

fer rates and related shape factors for such boundary

conditions—nor does an analytical derivation to facili-

tate the computation of these heat transfer rates and

shape factors. Therefore, there are four major objectives

of this study, to: (1) derive an analytical solution for the

tissue temperature field that can be extended for the case

of 3 closely spaced vessels [33]; (2) define and explicitly

quantify the related vessel–vessel and vessel–tissue heat

transfer rates; (3) define the corresponding shape fac-

tors, and; (4) study the effect of the boundary conditions

on the heat transfer rates and these shape factors as a
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function of various geometrical parameters in a finite tis-

sue region with two arbitrarily located blood vessels and

general Dirichlet boundary conditions. This work is an

extension of our earlier work on the vessel–tissue ther-

mal interactions with one vessel [32] with angularly vary-

ing tissue boundary/vessel wall temperatures and two

vessels [30] with uniform tissue boundary/vessel wall

temperatures. Additionally, note that by employing the

approach developed by Klemick et al. [34] the newly

developed 2D analytical solution can be extended to ob-

tain an approximate 3D tissue temperature distribution.
fvw1

g'''

Fig. 1. Schematic of the tissue cylinder with two unequal

arbitrarily located vessels.
2. Mathematical formulation

2.1. Solution

To meet the first objective, an exact, analytical series

solution of the 2-D Poisson equation is developed for a

finite, homogeneous, uniformly heated tissue region with

two arbitrarily located circular vessels and non-uniform

Dirichlet boundary conditions. A uniform source (which

represents the summation of metabolic heating and the

externally induced heating) distribution is assumed: (a)

for simplicity, and (b) since the distribution of the source

term can be approximated as being uniform over short

distances for many heating systems whose power deposi-

tion patterns vary negligibly over distances of the magni-

tude of the tissue boundary radius. A source term similar

to the Pennes� blood-tissue heat transfer related term [35]

is not included in our model since it represents a method

of replacing the effects of the vessels currently under

study. In other words, the Pennes. blood-tissue heat

transfer related term is an approximation of the cumula-

tive blood-tissue heat transfer rate from the thermally

significant vessels (vessels of diameter �100–1000 lm)

to tissue. Additionally, the vessels of diameter �100–

400 lm make the majority of the counter-current vessel

pairs [33]. Since the goal of the paper is to explicitly

quantify the vessel–vessel and vessel–tissue heat transfer

rates in a tissue imbedded with a pair of thermally signif-

icant vessels, the Pennes� perfusion term is not included.

To obtain the temperature field we impose non-

dimensional Eq. (1) in the tissue after converting it into

a Laplace equation using the change of variable from T

to T1.

1

R
o

oR
R
oT 1

oR

� �
þ 1

R2

o2T 1

ow2
¼ 0 ð1Þ
The associated boundary conditions are (Fig. 1).

T 1jR1
¼ F vw1ðh1Þ þ PR2

1=4 ð2Þ
T 1jR2

¼ F vw2ðh2Þ þ PR2
2=4 ð3Þ

T 1j1 ¼ F twðwÞ þ P j4 ð4Þ
The problem defined above can be rewritten as the

superposition of two sub-problems:

Sub-problem A-1:

1

R
o

oR
R
oT 11

oR

� �
þ 1

R2

o2T 11

ow2
¼ 0 ð5Þ

T 11jR1
¼ F vw1ðh1Þ þ PR2

1=4� c21 ð6Þ
T 11jR2

¼ c12 ð7Þ
T 11j1 ¼ F twðwÞ þ P=4 ð8Þ

Sub-problem A-2:

1

R
o

oR
R
oT 12

oR

� �
þ 1

R2

o2T 12

ow2
¼ 0 ð9Þ

T 12jR1
¼ c21 ð10Þ

T 12jR2
¼ F vw2ðh2Þ þ PR2

2=4� c12 ð11Þ

T 12j1 ¼ 0 ð12Þ

where,

T 1 ¼ T 11 þ T 12 ð13Þ

This division allows us to rewrite the original problem

with two blood vessels as a summation of two sub-prob-

lems each consisting of only one of the two vessels. Here,

cij is the temperature distribution produced on the wall

of the jth vessel by the wall of the ith vessel in sub-prob-

lem i. Note, that the values of the cij are not known and

therefore the boundary conditions (6), (7), (10), and (11)

cannot be used to obtain the complete solution–this

issue has been addressed later in the paper. To simplify

the problem even further by making the vessel and the
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tissue concentric [36] in both sub-problems, standard

bilinear transformation (wi) is used. The modified sub-

problem A-1 with boundary condition Eq. (8) can be

written as

1

R�
1

o

oR�
1

R�
1

oT 11

oR�
1

� �
þ 1

ðR�
1Þ

2

o2T 11

oa2
1

¼ 0 ð14Þ

with,

T 11j1 ¼ F twðwÞ þ P=4 ð15Þ

The general solution to Eq. (14) is [37]:

T 11 ¼ A01 þ A0
01 lnðR�

1Þ þ
X1
n¼1

fAn1ðR�
1Þ

n

þ A0
n1ðR�

1Þ
�ng sinðna1Þ þ

X1
n¼1

fBn1ðR�
1Þ

n

þ B0
n1ðR�

1Þ
�ng cosðna1Þ ð16Þ

Using Eqs. (15) and (16) and the orthogonality of sine

and cosine functions, the following relations can easily

be derived:

A01 ¼
1

2p

Z 2p

0

F twðwðU 1; V 1ÞÞda1 þ P=4 ð17Þ

An1 þ A0
n1 ¼ SAn1 ¼

1

p

Z 2p

0

F twðwðU 1; V 1ÞÞ

� sinðna1Þda1 ð18Þ

Bn1 þ B0
n1 ¼ SBn1 ¼

1

p

Z 2p

0

F twðwðU 1; V 1ÞÞ

� cosðna1Þda1 ð19Þ
Using Eqs. (17)–(19), Eq. (16) can be rewritten as

follows:

T 11 ¼ A01 þ A0
01 lnðR�

1Þ

þ
X1
n¼1

An1fðR�
1Þ

n � ðR�
1Þ

�ng sinðna1Þ

þ
X1
n¼1

SAn1 ðR�
1Þ

�n
sinðna1Þ

þ
X1
n¼1

Bn1fðR�
1Þ

n � ðR�
1Þ

�ng cosðna1Þ

þ
X1
n¼1

SBn1 ðR�
1Þ

�n
cosðna1Þ ð20Þ

Similarly, for sub-problem A-2, the following solution

can be obtained after applying the transformation w2

that makes vessel two and tissue concentric and the

boundary condition at the tissue boundary Eq. (12) in

the transformed plane:

T 12 ¼ A0
02 lnðR�

2Þ þ
X1
n¼1

An2fðR�
2Þ

n � ðR�
2Þ

�ng sinðna2Þ

þ
X1
n¼1

Bn2fðR�
2Þ

n � ðR�
2Þ

�ng cosðna2Þ ð21Þ
The complete solution using Eq. (13) and transforming

variable T1 back to T, can be written as

T ¼ A01 þ A0
01 lnðR�

1Þ þ A0
02 lnðR�

2Þ

þ
X1
n¼1

An1fðR�
1Þ

n � ðR�
1Þ

�ng sinðna1Þ

þ
X1
n¼1

An2fðR�
2Þ

n � ðR�
2Þ

�ng sinðna2Þ

þ
X1
n¼1

Bn1fðR�
1Þ

n � ðR�
1Þ

�ng cosðna1Þ

þ
X1
n¼1

Bn2fðR�
2Þ

n � ðR�
2Þ

�ng cosðna2Þ

þ
X1
n¼1

SAn1 ðR�
1Þ

�n
sinðna1Þ

þ
X1
n¼1

SBn1 ðR�
1Þ

�n
cosðna1Þ � PR2=4 ð22Þ

As mentioned above, since the values of cij in Eqs. (6),

(7), (10), and (11) are not known, the constants pre-

sented in Eq. (22) cannot be evaluated in the trans-

formed plane. Therefore, to evaluate all of the

constants (A0
01, A

0
02, A

0
n1, A

0
n2, B

0
n1 and B0

n2), the expression

shown in Eq. (22) should be expressed in the original

coordinates using relationships presented in the nomen-

clature section that relate R, R�
1, a1, R

�
2, and a2 to the ori-

ginal coordinates X1 and Y1 since the vessel wall

boundary conditions are known in the original plane

(given temperatures). To evaluate the complete set of

2(2N + 1) constants where N is the finite number of

terms considered in each of the above summation series,

a system of 2(2N + 1) independent linear equations

consisting of 2(2N + 1) constants should be formed by

multiplying the boundary condition equation (i + 1)

and the solution Eq. (22) with sinðmhiÞ and

cosðmhiÞðm ¼ 0; . . . ;NÞ, respectively, and integrating

over the perimeter of the ith vessel (i = 1,2) (Appendix

A). The obtained system of two (2N + 1) linear equa-

tions (due to two vessel wall boundary conditions) with

2(2N + 1) constants can be evaluated using any linear

equation solver. It can also be realized from the above

description that every other addition of a vessel in the

finite tissue medium introduces, in general, another

(2N + 1) constants, which can be evaluated using the

additional vessel wall boundary conditions. The new,

2D, non-dimensional solution is valid for large vessels

(i.e., vessels of diameter P1 mm) also, provided the

tissue heating around them can be considered as

uniform.

2.2. Heat transfer rates

To meet the goal of appropriately defining and quan-

tifying the vessel–vessel and vessel–tissue heat transfer
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rates it is important to account for the fact that in a

finite, non-insulated tissue with two vessels, some of

the energy leaving each vessel wall goes to the other ves-

sel wall and the rest of it goes to the outer tissue bound-

ary. We can express this physical situation as follows:

Qtotal;vw1 ¼ Qvw2–vw1 þ Qtw–vw1 ð23Þ
Qtotal;vw2 ¼ Qvw1–vw2 þ Qtw–vw2 ð24Þ

Further, using the exact solution for the tissue tempera-

ture field presented in the previous section the total heat

transfer rate entering each vessel wall can be calculated

by evaluating and integrating the flux around the vessels.

Thus in order to evaluate the vessel–vessel and vessel–

tissue heat transfer rates in the original problem

(Fig. 1), we have only two equations, Eqs. (23) and

(24), and four unknown heat fluxes (i.e., Qvw2–vw1,

Qtw–vw1, Qvw1–vw2, Qtw–vw2). (Note that in our evaluation

we do not assume, that Qvw2–vw1 = Qvw1–vw2, but rather

we will evaluate each of these terms separately.) To ob-

tain the needed additional expressions to explicitly eval-

uate these heat transfer rates, the original problem (Fig.

1) is presented as the superposition of the following two

sub-problems–one, with no tissue heating, zero outer tis-

sue boundary temperature and the given fluctuations at

the vessel walls (sub-problem B-1), and the other, with

the tissue heating, given fluctuations at the outer tissue

boundary and zero temperatures at the vessel walls

(sub-problem B-2). Hypothesizing that there is no heat

transfer rate between the surfaces with zero tempera-

tures irrespective of the tissue temperature distribution

in between those two surfaces (we will prove this

hypothesis shortly), equations for the heat transfer rates

for the first sub-problem can be written as follows.

For sub-problem B-1:

ðQtotal;vw1ÞB-1 ¼ ðQvw2–vw1ÞB-1 þ ðQtw–vw1ÞB-1 ð25Þ
ðQtotal;vw2ÞB-1 ¼ ðQvw1–vw2ÞB-1 þ ðQtw–vw2ÞB-1 ð26Þ

To prove our hypothesis, the sub-problem B-1 is further

sub-divided into two other sub-sub-problems; the first

with the fluctuations on vessel wall one and zero temper-

atures at the other boundaries (sub-sub-problem B-1-1),

and the second with the fluctuations on vessel wall two

and zero temperatures at the other boundaries (sub-

sub-problem B-1-2). If and if only our hypothesis is cor-

rect, can the equations for the heat transfer rates in these

sub-sub-problems be written as below.

For sub-sub-problem B-1-1:

ðQtotal;tbÞB-1-1 ¼ ðQtw–vw1ÞB-1 ð27Þ

For sub-sub-problem B-1-2:

ðQtotal;tbÞB-1-2 ¼ ðQtw–vw2ÞB-1 ð28Þ

Eqs. (27) and (28) show that evaluating and integrat-

ing the flux around the tissue boundary in sub-sub-prob-

lems B-1-1 and B-1-2 would provide the vessel–tissue
heat transfer rates from vessels one and two, respec-

tively, for sub-problem B-1. Subtracting these vessel–tis-

sue heat transfer rates from the total vessel heat

transfer rates, presented in Eqs. (25) and (26), would

provide evaluation of the vessel one to vessel two

(ðQvw1–vw2ÞB-1) and from vessel two to vessel one

(ðQvw1–vw2ÞB-1) heat transfer rates for sub-problem B-1.

Since we know that the vessel–vessel heat transfer rates

should be equal in magnitude and opposite in sign for

any arbitrary temperature distribution at the two vessel

walls and outer tissue boundary, it should be so in the

evaluations of (ðQvw1–vw2ÞB-1) and (ðQvw2–vw1ÞB-1) to inde-

pendently validate our hypothesis. As is presented later

in the results section, we have found that the two ves-

sel–vessel heat transfer rates were equal to each other

and opposite in signs for all the cases studied

herein, thus verifying the hypothesis that there is no heat

transfer rate between the surfaces with zero temper-

atures.

Now, in accordance with our proven hypothesis, the

second sub-problem B-2 does not result in any vessel–

vessel heat transfer rate (the vessel wall temperatures

are zero) and therefore, the original vessel–vessel heat

transfer rate, present in Fig. 1, is completely contained

in the first sub-problem B-1. Therefore the vessel–vessel

heat transfer rates quantified for the first sub-problem

are the vessel–vessel heat transfer rates present in the

original problem. Once, the vessel–vessel heat transfer

rate is known, the vessel–tissue heat transfer rates can

be evaluated using Eqs. (23) and (24).

2.3. Poisson conduction shape factors

Once the heat transfer rates are determined, the third

objective of the paper is fulfilled by defining the vessel–

vessel and vessel–tissue Poisson conduction shape fac-

tors based on the average vessel wall temperatures and

the average tissue boundary temperature. These expres-

sions in their non-dimensional form, for the unit length

of the tissue cylinder, are presented as follows:

Qtotal;vw1 ¼ Svw2–vw1ðT vw2;1 � T vw1;1Þ
þ Stw–vw1ðT tw;1 � T vw1;1Þ ð29Þ

Qtotal;vw2 ¼ Svw2–vw1ðT vw1;1 � T vw2;1Þ
þ Stw�vw2ðT tw;1 � T vw2;1Þ ð30Þ

Alternatively, based on the average vessel wall tempera-

tures and the average tissue matrix temperature, the two

VTPCSFs can be defined as follows (again, equations

are presented in their no-dimensional form):

Qtotal;vw1 ¼ Svw2–vw1ðT vw2;1 � T vw1;1Þ
þ Stm–vw1ðT avg � T vw1;1Þ ð31Þ

Qtotal;vw2 ¼ Svw2–vw1ðT vw1;1 � T vw2;1Þ
þ Stm–vw2ðT avg � T vw2;1Þ ð32Þ
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2.4. Parametric solutions

To meet the last objective of this study, i.e., to study

the effect of boundary conditions on the heat transfer

rates and the corresponding shape factors in heated,

finite tissues for a particular case of biological interest,

the cosine variations in Eqs. (33)–(35) are used since (1)

Wissler [10] has shown that for two nearby vessels in

an infinite unheated tissue matrix, the angular variation

in vessel wall temperature is similar to a cosine function,

and (2) any continuous temperature variation on the ves-

sel walls and outer tissue boundary can be represented as

a Fourier series with a summation of an average, non-

fluctuating value and a series of sines and cosines with

zero mean temperature. (Only one of the terms in this

series of sines and cosines has been studied since (1) the

physics of the problem does not change if we consider

more terms, and (2) if the results with additional terms

are desired the effect of other sine and cosine terms on

the tissue temperature distribution, heat transfer rates,

and the shape factors can be superimposed on the present

results due to the linearity of the problem.)

F vw1ðh1Þ ¼ 0þ T vw1;2 cosðnvw1h1 þ /vw1Þ ð33Þ
F vw2ðh1Þ ¼ T vw2;1 þ T vw2;2 cosðnvw2h2 þ /vw2Þ ð34Þ
F twðwÞ ¼ 1þ T tw;2 cosðntww þ /twÞ ð35Þ

We studied the effects of the fluctuations at the vessel

wall two on the heat transfer rates and PCSFs as a func-

tion of the geometrical parameters for the typical case of

cold vessels [12,41,42], i.e., when the average tissue

boundary temperature is higher than the average vessel

wall temperatures [38]. To perform the parametric study,

different fluctuation parameters in Eq. (34) are varied

one at a time by keeping the vessel one�s wall tempera-

ture and the tissue boundary temperature fixed. Differ-
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Rvw1 = 0.2, Av1 =�0.6, Tvw1,1 = 0.0, Tvw1,2 = 0.5, nvw1 = 2, /vw1 =

0, Rvw2 = Av2 = 0.3, Tvw2,1 = 0.6, Tvw2,2 = 1.0, nvw2 = 3,

/vw2 = 0, Ttw,1 = 1.0, ttw,2 = 1.0, ntw = 1, /tw = 0. Lines and

markers represent the given and evaluated boundary condi-

tions, respectively, at the two vessel walls and outer tissue

boundary.
ent values are assigned in Eq. (34) between: 0 and 1

for the magnitudes of fluctuations (Tvw2,2) (which corre-

sponds to ±5 �C) [39–41]; 0 and p for the phase angles

(/vw2), i.e., by rotating the imposed temperature fields

(simulating non-uniform tissue temperature distribu-

tion), and 0 and 3 for nvw2, i.e., by varying the number

of the imposed fluctuation peaks (simulating non-uni-

form tissue temperature distribution) (Figs. 3–11). While

all of the results are presented in Devashish [38], the cur-

rent study presents only the results for the effects of ves-

sel two�s wall temperature fluctuations on the PCSFs

defined based on the average tissue boundary tempera-

ture. The effects of these fluctuations on the average tis-

sue matrix based PCSFs are not presented since those

results are similar to the results for the average tissue

boundary temperature based PCSFs [38].

Further, to study a general case of unequal vessel

wall temperatures it is assumed in our study that the
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average wall temperature of vessel two (simulating a

vein) is higher than the average wall temperature of ves-

sel one (simulating an artery) and is approximately half

way (Tvw2,1 = 0.6) in between the average wall tempera-

tures of vessel one and outer tissue boundary. Also,

since in high temperature therapy applications the tem-

perature of the vessel wall and the tissue boundary usu-

ally varies in between 38 �C and 43 �C, this gives the

average vessel two wall temperature of 41 �C [39–41]

which is reasonable since arteries bring in cooler blood

to the heated tissues from rest of the body and veins take

out warmer blood from the heated arteries and veins.

Since the average tissue matrix temperature reaches at

least 43 �C [39–41], the non-dimensional source term

P, which is the summation of the metabolic heat gener-

ation and externally induced heating, takes the maxi-

mum value of 50 in Figs. 3–8 so that the difference

between the area averaged tissue matrix temperature

and the average vessel wall one temperature reaches

approximately two times the difference between the aver-

age tissue boundary and vessel wall one temperatures.

To study the effect of the source term on the vessel–tis-

sue heat transfer rates and VTPCSFs, the results are also

presented for the unheated tissues (Figs. 9–11). The total

number of terms �N� used in the series solution to pro-

duce results is 20. This makes the maximum error in

the evaluation of boundary temperatures (Fig. 2) less

than 0.5%, which is sufficient for bio-heat transfer appli-

cations [27].

Next, regarding the rationale behind assigning spe-

cific values to geometrical parameters, this is given in

[30] and is as follows. Since it is well known that the ves-

sels of radius �50–200 lm are thermally significant and

make the majority of the counter-current vessel pairs

[33,43], and the ratio of diameters of veins to arteries

in living systems varies from �1 to 2 [7,44,45], to study

the effect of the vessel radius on the heat transfer rates
and PCSFs, the non-dimensional radius of vessel two,

Rvw2 is varied from 0.1 to 0.5 (�56–282 lm) while keep-

ing the non-dimensional radius of vessel one as 0.2

(�112 lm) and assuming that the radius of the tissue

matrix is �564 lm (since there are 1–3 vessels in the tis-

sue of the size of 1 mm2 [33]). The value of the eccentric-

ity of vessel one, Av1 is chosen as �0.6 and the value of

vessel two�s eccentricity, Av2 is chosen as +0.3 to be able

to put part of the perimeter of the vessels close to the tis-

sue boundary to see the boundary effects. To study the

effect of the vessel eccentricity on the heat transfer rates

and PCSFs in the cases of traditional vessel pairs [33]

(when the smallest distance between the two vessel walls

is not greater than the largest diameter of the two ves-

sels), the eccentricity of vessel two is varied from 0.1

to 0.5. The non-dimensional eccentricity of vessel one

is kept as �0.6 for the afore mentioned reasons. The

non-dimensional radii of vessels one and two are chosen

as 0.2 and 0.3 respectively, since, as mentioned before,

the ratio of the diameters of the veins to arteries varies

in between 1 and 2 in living systems [7,44,45].
3. Results

First, in terms of model verification it was found that

the two vessel–vessel heat transfer rate terms, Qvw1–vw2

and Qvw2–vw1 are always equal to each other in magni-

tude and opposite in sign for all vessel diameters, eccen-

tricities, and wall temperatures studied. These results

verify our hypothesis that there is no heat transfer rate

between the surfaces with zero temperatures irrespective

of the tissue temperature field in between them. Addi-

tionally, Fig. 2 presents the given and calculated bound-

ary conditions for the heated tissue case to show that the

developed solution satisfies all the boundary conditions

and thus validating our solution further.

In terms of specific results, Figs. 3–5 present the var-

iation in the VVPCSFs with the non-dimensional vessel

two radius (Rvw2) and eccentricity (Av2) for different val-

ues of the vessel two fluctuation parameters Tvw2,2, /vw2,

and nvw2. Notice that these results are valid for both,

unheated and heated tissues since source term does not

affect the vessel–vessel heat transfer rate and the

VVPCSF. Further, since the VVPCSFs are a scaled mea-

sure of the non-dimensional vessel–vessel heat transfer

rate (Qvw1–vw2), thus the results in Figs. 3–5 can also

be thought of as curves for Qvw1–vw2 [30].

To compare with the results presented in Figs. 3–5

for the VVPCSFs and also to study the effects of the

fluctuations on the vessel two to tissue heat transfer

rates, Figs. 6–8 present the variation in the VTPCSFs

for heated tissues (P = 50) with the non-dimensional ves-

sel two radius (Rvw2) and eccentricity (Av2) for different

values of the fluctuation parameters Tvw2,2, /vw2, and

nvw2, respectively. In addition, since the VTPCSFs are
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a scaled measure of the non-dimensional vessel–tissue

heat transfer rate (Qtw–vw2) thus the results in Figs. 6–8

can also be thought of as curves for Qtw–vw2.

To study the effect of power and also to show how

the effects of fluctuations increase in mildly heated tis-

sue, Figs. 9–11 present the variation in the VTPCSFs

for unheated tissues (P = 0) with the non-dimensional

vessel two radius (Rvw2) and eccentricity (Av2) for differ-

ent values of the fluctuation parameters Tvw2,2, /vw2,

and nvw2.
4. Discussion

The goal of our work was to appropriately define and

explicitly quantify the vessel–vessel and vessel–tissue heat

transfer rates and the associated Poisson conduction

shape factors when spatially variable boundary condi-

tions are present. The first, and most important result

is that the vessel–vessel heat transfer rates and the related

shape factors significantly depend on the magnitude (Fig.

3), phase (Fig. 4) and frequency (Fig. 5) of the vessel wall

temperature fluctuations. They do not, however, depend

on the tissue boundary temperature fluctuations and/or

the source term. This result is easily explained by noticing

that the vessel–vessel heat transfer rate is contained in the

sub-problem B-1 which is unaffected by the sub-problem

B-2 containing the tissue boundary temperature fluctua-

tions and the source term. It is significant that even

though the average temperature of vessel wall two is

higher than the average temperature of vessel wall one

in all of the cases in Figs. 3–5, the presence of (zero mean)

fluctuations can reverse vessel–vessel heat transfer direc-

tion and cause energy to flow from vessel wall one to two-

instead of from vessel two to vessel one, as traditionally

would be thought and modeled. This can easily be ex-

plained by realizing that the vessel–vessel heat transfer

rates and thus the vessel–vessel Poisson conduction

shape factors are significantly affected by the tempera-

ture distribution at the parts of the two vessel perimeters

that are close to each other (Figs. 3–5). Since, the vessel–

vessel heat transfer is an important mechanism in ther-

moregulation, our first result suggests the importance

of including the effects of fluctuations in modeling this

heat transfer rate.

Second, similar to the vessel–vessel heat transfer rates

and VVPCSFs, the vessel–tissue heat transfer rates and

the relevant shape factors also depend on the vessel wall

temperature fluctuations (Figs. 6–11). This result can

easily be explained by noticing that in sub-problem B-

1, the fluctuations on the vessel walls will change the

temperature difference between these vessels and the

outer tissue boundary and thus will affect the net heat

transfer rate between the tissue and the vessels. The ef-

fect of the tissue boundary temperature fluctuations on

the vessel–tissue heat transfer rate will also be significant
as can be explained from sub-problem B-2. Additionally,

realize that the vessel 2–tissue heat transfer rate and thus

the vessel 2–tissue Poisson conduction shape factor are

significantly affected by the temperature distribution at

the parts of the vessel 2 and outer tissue boundary

perimeters that are close to each other. Further, the ef-

fect of the vessel wall fluctuations on the vessel to tissue

heat transfer rates decreases as the strength of the source

term increases (Figs. 9–11). This can be explained since

an increase in the strength of the source term increases

the heat transfer rates from tissue to vessels (sub-prob-

lem B-2) without affecting the heat transfer rates due

to fluctuations.

Third, regarding the definition of shape factors, it can

be noticed from sub-problem B-2 that although there is

a finite heat transfer rate between the tissue and the ves-

sels, the average temperature difference between any two

surfaces is zero. Similarly, if sub-problem 3-1 is divided

in two sub-sub-problems; one, with the average temper-

atures and the other with the fluctuations only, the sec-

ond sub-sub-problem has a finite heat transfer rate

between the two vessel walls and between the vessel

walls and the tissue boundary, with zero average temper-

ature difference between any two surfaces. Therefore, the

average vessel wall and tissue boundary temperatures

based shape factors are singular for these problems. Fur-

ther, it can be seen from Eqs. (31) and (32) that the aver-

age tissue matrix based shape factors also have the

potential to approach infinity if this temperature

approaches any of the two average vessel wall tempera-

tures. These observations suggest that new definitions of

shape factors are needed that are bounded.

Fourth, again regarding the definition of shape fac-

tors, since in sub-problem B-2 there is a finite heat trans-

fer rate between the vessel walls and outer tissue

boundary which is, in general, not proportional to the

average temperature difference between the two surfaces

(or between the average tissue matrix temperature and

the vessel wall temperatures), the shape factors are func-

tions of the boundary temperatures themselves.

Fifth, it can be realized from Figs. 6–11 that the ves-

sel–tissue heat transfer rates from vessel two is depen-

dent on the fluctuations, while the vessel one to tissue

heat transfer rate is fixed (since the temperature differ-

ence between those two surfaces is fixed). Thus, in gen-

eral, the vessel–tissue heat transfer rates are neither

equal to each other nor is their summation zero. There-

fore, the vessel–vessel heat transfer analyses that include

the assumption that there is no net vessels to tissue heat

transfer [8,9,12,15,21–23,28], or that the vessel to tissue

heat transfer rates are equal to each other [8,11,

12,14,18,24–27,29], or that there is no vessel–vessel heat

transfer [17] have limited applicability in principle, and

the limits of their usefulness need to be evaluated.

Regarding the limitations of this study, although the

present study gives useful insights into the quantitative
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behavior of the heat transfer rates and the shape factors

in 2-D, it neglects the effect of axial tissue conduction. In

order to have more realistic estimates of the heat trans-

fer rates and the shape factors the present study should

be extended to 3-D geometries with general Dirichlet

boundary conditions.
5. Conclusions

This paper presents an exact analytical series solution

for the tissue temperature distribution in a finite, un-

heated/heated, non-insulated tissue with a pair of arbi-

trarily located vessels and general Dirichlet boundary

conditions. The most important results from this study

are that the effect of fluctuations on the vessel–vessel

and vessel–tissue heat transfer rates can be significant.

Therefore, in some situations, it will be necessary to

model these fluctuations to accurately evaluate the tissue

temperature distributions.
Appendix A

The purpose of this appendix is to show how

2(2N + 1) constants (A0
01, A

0
02, A

0
n1, A

0
n2, B

0
n1 and B0

n2Þ of

Eq. (22) can be evaluated by constructing a linear system

of 2(2N + 1) equations.
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The following relationships, mentioned in the nomencla-

ture section, relate the variables ðR;R�
1; a1;R�

2; a2Þ of Eq.
(22) to the original coordinates (X1, and Y1):

R2 ¼ X 2
1 þ Y 2

1 ðA:1Þ
ðR�

i Þ
2 ¼ ðUiÞ2 þ ðV iÞ2; i ¼ 1; 2 ðA:2Þ

a1 ¼ tan�1ðV ijUiÞ; i ¼ 1; 2 ðA:3Þ
Ui ¼ fðX i � kiÞð1� kiX iÞ � kiY 2

i g
=fð1� ðkiX iÞ2 � ðkiY iÞ2g; i ¼ 1; 2 ðA:4Þ
V i ¼ fð1� k2
i ÞY ig=fð1� kiX iÞ2 � ðkiY iÞ2g;

i ¼ 1; 2 ðA:5Þ

ki ¼ f1þ a1ia2i � ðð1� a21iÞð1� a22iÞÞ
1=2g=ða1i þ a2iÞ;

i ¼ 1; 2 ðA:6Þ
a1i ¼ Avi � Rvwi; i ¼ 1; 2 ðA:7Þ
a2i ¼ Avi þ Rvwi; i ¼ 1; 2 ðA:8Þ
X 2 ¼ X 1 cosð/1Þ þ Y 1 sinð/1Þ ðA:9Þ
Y 2 ¼ Y 1 cosð/1Þ þ X 1 sinð/1Þ ðA:10Þ

Substituting Eqs. (A.1)–(A.10) into Eq. (22), the new

Eq. (22) in the original coordinates (X1, Y1) can be

rewritten as follows:

T ¼ A01 þ A0
01 lnðR�

1ðX 1; Y 1ÞÞ þ A0
02 lnðR�

2ðX 1; Y 1ÞÞ

þ
X1
n¼1

An1fðR�
1ðX 1; Y 1ÞÞn

� ðR�
1ðX 1; Y 1ÞÞ�ng sinðna1ðX 1; Y 1ÞÞ

þ
X1
n¼1

An2fðR�
2ðX 1; Y 1ÞÞn

� ðR�
2ðX 1; Y 1ÞÞ�ng sinðna2ðX 1; Y 1ÞÞ

þ
X1
n¼1

Bn1fðR�
1ðX 1; Y 1ÞÞn

� ðR�
1ðX 1; Y 1ÞÞng cosðna1ðX 1; Y 1ÞÞ

þ
X1
n¼1

Bn2fðR�
2ðX 1; Y 1ÞÞn

� ðR�
2ðX 1; Y 1ÞÞ�ng cosðna2ðX 1; Y 1ÞÞ

þ
X1
n¼1

SAn1 ðR�
1ðX 1; Y 1ÞÞn sinðna1ðX 1; Y 1ÞÞ

þ
X1
n¼1

SBn1 ðR�
1ðX 1; Y 1ÞÞ�n

cosðna1ðX 1; Y 1ÞÞ

� PR2ðX 1; Y 1Þ=4 ðA:11Þ

The original coordinates (X1,Y1) relate to the vessel 1

parameters (Rvw1,h1) and vessel 2 parameters (Rvw2,h2)
as given below.

For vessel 1:

X 1 ¼ Rvw1 cos h1 þ Av1 ðA:12Þ
Y 1 ¼ Rvw1 sin h1 ðA:13Þ

For vessel 2:

X 1 ¼ ðRvw2 cos h2 þ Av2Þ cosð/1Þ
� ðRvw2 sin h2Þ sinð/1Þ ðA:14Þ

Y 1 ¼ ðRvw2 cos h2 þ Av2Þ sinð/1Þ
� ðRvw2 sin h2Þ cosð/1Þ ðA:15Þ
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Substituting Eqs. (A.12)–(A.15), respectively into Eq.

(A.11) and applying the original vessel wall boundary

conditions to the resulting equation, gives the following

two equations:
F vw1 ¼ 1þ P=4þ A0
01 lnðR�

1ðRvw1; h1ÞÞ
þ A0

02 lnðR�
2ðRvw1; h1ÞÞ

þ
X1
n¼1

An1fðR�
1ðRvw1; h1ÞÞn

� ðR�
1ðRvw1; h1ÞÞ�ng sinðna1ðRvw1; h1ÞÞ

þ
X1
n¼1

An2fðR�
2ðRvw1; h1ÞÞn

� ðR�
2ðRvw1; h1ÞÞ�ng sinðna2ðRvw1; h1ÞÞ

þ
X1
n¼1

Bn1fðR�
1ðRvw1; h1ÞÞn

� ðR�
1ðRvw1; h1ÞÞ�ng cosðna1ðRvw1; h1ÞÞ

þ
X1
n¼1

Bn2fðR�
2ðRvw1; h1ÞÞn

� ðR�
2ðRvw1; h1ÞÞ�ng cosðna2ðRvw1; h1ÞÞ

� PR2ðRvw1; h1Þ=4 ðA:16Þ

F vw2 ¼ 1þ P=4þ A0
01 lnðR�

1ðRvw2; h2ÞÞ

þ A0
02 lnðR�

2ðRvw2; h2ÞÞ þ
X1
n¼1

An1fðR�
1ðRvw2; h2ÞÞn

� ðR�
1ðRvw2; h2ÞÞ�ng sinðna1ðRvw2; h2ÞÞ

þ
X1
n¼1

An2fðR�
2ðRvw2; h2ÞÞn

� ðR�
2ðRvw2; h2ÞÞ�ng sinðna2ðRvw2; h2ÞÞ

þ
X1
n¼1

Bn1fðR�
1ðRvw2; h2ÞÞn

� ðR�
1ðRvw2; h2ÞÞ�ng cosðna2ðRvw2; h2ÞÞ

þ
X1
n¼1

Bn2fðR�
2ðRvw2; h2ÞÞn

� ðR�
2ðRvw2; h2ÞÞ�ng cosðna2ðRvw2; h2ÞÞ

� PR2ðRvw2; h2Þ=4 ðA:17Þ

It can be seen from Eqs. (A.16) to (A.17) that they are

only functions of vessel 1 and vessel 2 parameters,

respectively. Multiplying both sides of Eq. (A.16)

with sinðmh1Þ and cosðmh1Þ, respectively (where, m =

0, . . . ,N), and integrating over the vessel 1 perimeter

(h1 = 0, . . . , 2p) will result in a linear system of 2N + 1

equations with 2(2N + 1) unknowns. Similarly, multiply-

ing both sides of Eq. (A.17) with sinðmh2Þ and cosðmh2Þ,
respectively (where, m = 0, . . . ,N), and integrating over

the vessel 2 perimeter (h2 = 0, . . . , 2p) will result in an

additional linear system of 2N + 1 equations with

2(2N + 1) unknowns. This complete set of 2(2N + 1)
equations with 2(2N + 1) unknowns can be solved using

any linear equation solver to evaluate the constants.
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